publications

preprints in review, journal articles, and papers published in conference proceedings

  1. Efficient and accurate explanation estimation with distribution compression
    H. Baniecki, G. Casalicchio, B. Bischl, P. Biecek
    ICML 2024 Workshops
    Compress then explain: Sample-efficient estimation of feature attributions, importance, effects.
  2. Interpretable machine learning for survival analysis
    S. H. Langbein, M. Krzyzinski, M. Spytek, H. Baniecki, P. Biecek, M. N. Wright
    arXiv:2403.10250v2

preprints, in review

accepted / in press / published

  1. Aggregated attributions for explanatory analysis of 3D segmentation models
    M. Chrabaszcz=, H. Baniecki=, P. Komorowski, S. Plotka, P. Biecek
    WACV 2025
  2. shapiq: Shapley interactions for machine learning
    M. Muschalik, H. Baniecki, F. Fumagalli, P. Kolpaczki, B. Hammer, E. Hullermeier
    NeurIPS 2024
  3. Increasing phosphorus loss despite widespread concentration decline in US rivers
    W. Zhi, H. Baniecki, J. Liu, E. Boyer, C. Shen, G. Shenk, X. Liu, L. Li
    Proceedings of the National Academy of Sciences, 2024
  4. On the robustness of global feature effect explanations
    H. Baniecki, G. Casalicchio, B. Bischl, P. Biecek
    ECML PKDD 2024
    Theoretical bounds for the robustness of feature effects to data and model perturbations.
  5. Performance is not enough: The story told by a Rashomon quartet
    P. Biecek, H. Baniecki, M. Krzyzinski, D. Cook
    Journal of Computational and Graphical Statistics, 2024
  6. Red-teaming segment anything model
    K. Jankowski=, B. Sobieski=, M. Kwiatkowski, J. Szulc, M. Janik, H. Baniecki, P. Biecek
    CVPR 2024 Workshops
  7. Adversarial attacks and defenses in explainable artificial intelligence: A survey
    H. Baniecki, P. Biecek
    Information Fusion, 2024
    Review of adversarial attacks on explanations and how to defend them.
  8. Interpretable machine learning for time-to-event prediction in medicine and healthcare
    H. Baniecki, B. Sobieski, P. Szatkowski, P. Bombinski, P. Biecek
    Artificial Intelligence in Medicine, 2024
    Best Paper Runner-up at the AIME 2023 conference.
  9. survex: an R package for explaining machine learning survival models
    M. Spytek, M. Krzyzinski, S. H. Langbein, H. Baniecki, M. N. Wright, P. Biecek
    Bioinformatics, 2023
  10. Towards evaluating explanations of vision transformers for medical imaging
    P. Komorowski, H. Baniecki, P. Biecek
    CVPR 2023 Workshops
  11. SurvSHAP(t): Time-dependent explanations of machine learning survival models
    M. Krzyzinski, M. Spytek, H. Baniecki, P. Biecek
    Knowledge-Based Systems, 2023
  12. The grammar of interactive explanatory model analysis
    H. Baniecki, D. Parzych, P. Biecek
    Data Mining and Knowledge Discovery, 2023
    Interactive explanation of a model improves the performance of human decision making.
  13. Multi-omics disease module detection with an explainable greedy decision forest
    B. Pfeifer, H. Baniecki, A. Saranti, P. Biecek, A. Holzinger
    Scientific Reports, 2022
  14. Fooling partial dependence via data poisoning
    H. Baniecki, W. Kretowicz, P. Biecek
    ECML PKDD 2022
    Feature effect explanations can be manipulated in an adversarial manner.
  15. Manipulating SHAP via adversarial data perturbations (student abstract)
    H. Baniecki, P. Biecek
    AAAI 2022
  16. dalex: Responsible machine learning with interactive explainability and fairness in Python
    H. Baniecki, W. Kretowicz, P. Piatyszek, J. Wisniewski, P. Biecek
    Journal of Machine Learning Research, 2021
    2022 John M. Chambers Statistical Software Award
  17. Responsible prediction making of COVID-19 mortality (student abstract)
    H. Baniecki, P. Biecek
    AAAI 2021
  18. modelStudio: Interactive studio with explanations for ML predictive models
    H. Baniecki, P. Biecek
    Journal of Open Source Software, 2020

peer-reviewed, non-archival

  1. Red teaming models for hyperspectral image analysis using explainable AI
    V. Zaigrajew, H. Baniecki, L. Tulczyjew, A. M. Wijata, J. Nalepa, N. Longepe, P. Biecek
    ICLR 2024 Workshops