publications

preprints in review, journal articles, and papers published in conference proceedings

  1. Interpretable machine learning for survival analysis
    S. H. Langbein, M. Krzyzinski, M. Spytek, H. Baniecki, P. Biecek, M. N. Wright
    arXiv:2403.10250v2

preprints, in review

accepted / in press / published

  1. Explaining similarity in vision-language encoders with weighted Banzhaf interactions
    H. Baniecki, M. Muschalik, F. Fumagalli, B. Hammer, E. Hüllermeier, P. Biecek
    Advances in Neural Information Processing Systems (NeurIPS), 2025
    We introduce faithful interaction explanations of CLIP and SigLIP models (FIxLIP), offering a unique, game-theoretic perspective on interpreting image–text similarity predictions.
  2. MLJ
    Birds look like cars: Adversarial analysis of intrinsically interpretable deep learning
    H. Baniecki, P. Biecek
    Machine Learning, 2025
  3. Interpreting CLIP with hierarchical sparse autoencoders
    V. Zaigrajew, H. Baniecki, P. Biecek
    International Conference on Machine Learning (ICML), 2025
    We introduce the Matryoshka sparse autoencoder (MSAE) that establishes a state-of-the-art Pareto frontier between reconstruction quality and sparsity for interpreting CLIP models.
  4. ICLR Spotlight
    Efficient and accurate explanation estimation with distribution compression
    H. Baniecki, G. Casalicchio, B. Bischl, P. Biecek
    International Conference on Learning Representations (ICLR), 2025 (Spotlight)
    We introduce compress then explain (CTE) as a new paradigm for sample-efficient estimation of post-hoc explanations, including feature attributions, importance, and effects.
  5. WACV Oral
    Aggregated attributions for explanatory analysis of 3D segmentation models
    M. Chrabaszcz=, H. Baniecki=, P. Komorowski, S. Plotka, P. Biecek
    IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2025 (Oral)
    We discover knowledge acquired by the TotalSegmentator foundation model trained to segment all anatomical structures in computed tomography medical images.
  6. Interpretable machine learning for time-to-event prediction in medicine and healthcare
    H. Baniecki, B. Sobieski, P. Szatkowski, P. Bombinski, P. Biecek
    Artificial Intelligence in Medicine, 2025
    Best Paper Runner-up at the International Conference on Artificial Intelligence in Medicine, 2023.
  7. shapiq: Shapley interactions for machine learning
    M. Muschalik, H. Baniecki, F. Fumagalli, P. Kolpaczki, B. Hammer, E. Hüllermeier
    Advances in Neural Information Processing Systems (NeurIPS), 2024
    We develop {shapiq}, an open-source Python package that implements several algorithms and benchmarks for efficiently approximating game-theoretic attribution and interaction indices.
  8. Increasing phosphorus loss despite widespread concentration decline in US rivers
    W. Zhi, H. Baniecki, J. Liu, E. Boyer, C. Shen, G. Shenk, X. Liu, L. Li
    Proceedings of the National Academy of Sciences, 2024
    We reveal a paradox in US rivers with deep learning: phosphorus concentration is down over the last 40 years, particularly in urban areas, but total phosphorus loss is up due to climate change.
  9. On the robustness of global feature effect explanations
    H. Baniecki, G. Casalicchio, B. Bischl, P. Biecek
    European Conference on Machine Learning (ECML PKDD), 2024
    Theoretical bounds for the robustness of feature effects to data and model perturbations.
  10. Performance is not enough: The story told by a Rashomon quartet
    P. Biecek, H. Baniecki, M. Krzyzinski, D. Cook
    Journal of Computational and Graphical Statistics, 2024
  11. Red-teaming segment anything model
    K. Jankowski=, B. Sobieski=, M. Kwiatkowski, J. Szulc, M. Janik, H. Baniecki, P. Biecek
    IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2024
  12. Adversarial attacks and defenses in explainable artificial intelligence: A survey
    H. Baniecki, P. Biecek
    Information Fusion, 2024
  13. survex: an R package for explaining machine learning survival models
    M. Spytek, M. Krzyzinski, S. H. Langbein, H. Baniecki, M. N. Wright, P. Biecek
    Bioinformatics, 2023
  14. Towards evaluating explanations of vision transformers for medical imaging
    P. Komorowski, H. Baniecki, P. Biecek
    IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2023
  15. SurvSHAP(t): Time-dependent explanations of machine learning survival models
    M. Krzyzinski, M. Spytek, H. Baniecki, P. Biecek
    Knowledge-Based Systems, 2023
  16. The grammar of interactive explanatory model analysis
    H. Baniecki, D. Parzych, P. Biecek
    Data Mining and Knowledge Discovery, 2023
  17. Multi-omics disease module detection with an explainable greedy decision forest
    B. Pfeifer, H. Baniecki, A. Saranti, P. Biecek, A. Holzinger
    Scientific Reports, 2022
  18. Fooling partial dependence via data poisoning
    H. Baniecki, W. Kretowicz, P. Biecek
    European Conference on Machine Learning (ECML PKDD), 2022
  19. Manipulating SHAP via adversarial data perturbations (student abstract)
    H. Baniecki, P. Biecek
    AAAI Conference on Artificial Intelligence (AAAI), 2022
  20. dalex: Responsible machine learning with interactive explainability and fairness in Python
    H. Baniecki, W. Kretowicz, P. Piatyszek, J. Wisniewski, P. Biecek
    Journal of Machine Learning Research, 2021
    2022 John M. Chambers Statistical Software Award by the American Statistical Association
  21. Responsible prediction making of COVID-19 mortality (student abstract)
    H. Baniecki, P. Biecek
    AAAI Conference on Artificial Intelligence (AAAI), 2021
  22. modelStudio: Interactive studio with explanations for ML predictive models
    H. Baniecki, P. Biecek
    Journal of Open Source Software, 2020