Hubert Baniecki\(^{1,2}\), Bartlomiej Sobieski\(^{2}\), Przemysław Bombiński\(^{2,3}\), Patryk Szatkowski\(^{2,3}\), Przemysław Biecek\(^{1,2}\)
\(^{1}\)University of Warsaw, \(^{2}\)Warsaw University of Technology,
\(^{3}\)Medical University of Warsaw
AIME 2023, Portoroz, Slovenia
June 13, 2023
To what extent can the patient’s length of stay in a hospital be predicted using only an X-ray image?
Motivation: explain black-box models predicting hospital LoS
K. Stone et al. PLOS Digital Health, 1(4):e0000017, 2022.
Task: time-to-event prediction
instead of a single-value time regression or time-span classification
We manually annotated textual radiology reports of X-ray images:
Predicting the patient’s LoS from an X-ray image is indeed possible, but challenging.
Performance of the interpretable model declines when increasing the number of features.
For classification (or regression), we have:
What about time-to-event prediction?
M. Krzyziński, M. Spytek, H. Baniecki, P. Biecek. SurvSHAP(t): Time-dependent explanations of machine learning survival models. Knowledge-Based Systems, 262:110234, 2023.
Implemented in both R & Python!
Contact and resources: hbaniecki.com
Hubert Baniecki et al. Hospital Length of Stay Prediction.. pp. 65–74